If it's not what You are looking for type in the equation solver your own equation and let us solve it.
99x^2=180
We move all terms to the left:
99x^2-(180)=0
a = 99; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·99·(-180)
Δ = 71280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{71280}=\sqrt{1296*55}=\sqrt{1296}*\sqrt{55}=36\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{55}}{2*99}=\frac{0-36\sqrt{55}}{198} =-\frac{36\sqrt{55}}{198} =-\frac{2\sqrt{55}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{55}}{2*99}=\frac{0+36\sqrt{55}}{198} =\frac{36\sqrt{55}}{198} =\frac{2\sqrt{55}}{11} $
| -69=-4(5x-1)+7 | | p/2-37=47 | | 66=6(n-8)+6(n+3) | | 44=q/10+40 | | 3+7d=87 | | 2(5s+5)-4s=3(2s+4)-17 | | 3(r-5)=3r-15 | | 9-9u=-1-7u-8 | | u-90/3=2 | | 8x-20=35 | | 8x-20=40 | | 8x-20=45 | | 0.8(x+80)+0.2x=89 | | -2(6+3v)=9(v+2) | | -6+2c=3c | | 12^(2x-8)=15 | | 6n/7+16=-20 | | 6^4=36^x | | -7y+2=9-8y | | −0.75p−8=0.25p | | -34=r/10-43 | | P-8p=-55 | | h/10-2=2 | | -(v-2)=6-v | | 9=5-m/7 | | M^2-9m=-15 | | -6n=-5n+6 | | 4+4q=56 | | -7.5x+0.36=-2.64 | | 39-8p=7(3p+9)5 | | 9(p+6)=72 | | 3x^2+27x+18=0 |